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ABSTRACT

In this work we present our ongoing investigation of novel ap-
proaches for information processing and representation in a sensor

web. Since sensor nodes capture spatially and temporally corre-

lated information there are several alternatives in order to exploit

correlation, namely, (a) sensors can exploit this spatial correlation

by first exchanging data and then compressing it in a distributed

manner, or (b) sensors can exploit temporal correlation locally

only, or (c) sensors can even exploit correlation across time and

space. We aim to develop techniques based on the last approach,

which will tend to reduce the total amount of data to be trans-

ferred in the sensor web at the expense of some additional (po-

tentially minor) power consumption. We are investigating meth-

ods for sampling, routing, processing and compression. All of

these aim at maximizing the quality of the data available at the

fusion center for a given energy consumption target at the nodes.
Two types of methods for exploiting spatio-temporal correlation

between sensors are presented here. First we consider a compres-

sion scheme based on a distributed 2D wavelet transform along

arbitrary routing trees and discuss its extension to include a tem-

poral component of the transform. Second, we explore techniques

that involve “sub-sampling”, i.e., where data is not captured by all

nodes, (including methods based on traditional sampling, as well

as new approaches based on compressed sensing). Investigation of

joint routing and compression optimization is also underway for

both classes of methods, with preliminary results presented here.

The techniques presented here provide a variety of ways to exploit

data correlation through the routing choices made, the compres-

sion choices made across time and space, and the joint decisions

on compression and routing, ultimately leading to lower cost and

higher quality data. We also discuss the current status of an im-
plementation of the distributed wavelet transform on a practical

sensor platform, as well as extensions of our algorithms to take

advantage of radio range characteristics of these sensors.

1. INTRODUCTION

Wireless sensor networks (WSN) can offer mobility and versatility

for a variety of applications, such as object detection/tracking, en-

vironment monitoring and traffic control [1]. Still, one of the main

obstacles they face is that they often rely on batteries for power

supply; thus limiting their energy consumption becomes essential

to ensure network survivability.

When from multiple correlated sources is acquired, aggrega-

tion involving in-network data compression can offer a more ef-
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ficient representation of measurements, significantly reducing the

amount of information that needs to be transmitted over the net-

work, thus leading to a potentially large reduction in energy con-

sumption. Prior work has addressed a number of distributed source

coding (DSC) methods as a means to decorrelate data. While some

rely on information exchange and additional computation inside

the network to propose distributed versions of transforms, such

as Karhunen-Loève [2] and wavelets [3], others propose schemes

that do not require internode communication, such as networked

Slepian-Wolf coding [4, 5]. In general, DSC techniques face a

trade-off between i) more processing at each node to achieve more
compression and ii) less processing which would require more in-

formation (bits) to be sent to the sink. This trade-off has also been

addressed by previous research. Pattem et al [6] provide an analy-

sis on the regions in a network that should favor compression over

routing based on the impact of spatial correlation of the measure-

ments. The performance of aggregation under a more general data

model is considered by Goel and Estrin [7].

Our focus has been on the problems of (i) finding an optimal

assignment of compression algorithms to nodes that minimizes to-

tal energy consumption and (ii) finding data aggregation structures

that best exploit spatial data correlation across nodes in terms of a
cost-distortion trade-off. We primarily investigate two basic trade-

offs associated with problems (i) and (ii). The first basic trade-off

comes in the selection of number of levels of decomposition for a

wavelet transform, although the same principle can be extended to

other classes of signal representation and compression. We seek

to achieve efficient signal compression by exploiting spatial signal

correlation (e.g., temperature measurements in neighboring nodes

in a sensor network will tend to be similar). In general, coding

schemes that remove correlation across multiple nodes will tend

to lead to higher coding efficiency, but at the cost of increased “lo-

cal” communications, i.e., a distributed approach means that nodes

have to exchange data before the final compressed version (which

is sent to the fusion node) can be generated.

The second trade-off is that between aggregation trees that

result in energy-efficient routing, i.e. shortest path routing trees

(SPT), and ones that allow a transform to de-correlate data effec-

tively. Since data is compressed as it is routed to the sink along

some given routing tree, correlation is only exploited along those

pre-defined paths. Considering an SPT, it guarantees that the path

from a given node to the sink is most efficient for routing, but obvi-

ously does not guarantee that consecutive nodes in a path contain

highly correlated data. Thus, correlation may not be exploited ef-

fectively along an SPT and can result in less efficient coding.

In our earlier work based on path-wise wavelet transforms and

recent work extending these ideas to 2D wavelet transforms, we

focused on methods that exploit data correlation by applying a



spatial transform to snapshots of data from every node in the net-

work. However, it may also be possible to collect only a subset of

measurements in a structured manner and still achieve high quality

data reconstruction. For example, in compressed sensing [8–10], if

a signal is known to be “sparse” in a particular basis (i.e., it can be

represented by a small number of coefficients in some know basis)

then only a small subset of measurements is needed to reconstruct

the entire set of data. As such, we also consider methods that only
capture measurements from a subset of nodes as an alternative to

transforms that sample data from every node in the network.

This paper describes our recent progress in the development

of novel distributed compression algorithms for sensor webs, un-

der funding from the NASA-ESTO AIST program. We begin with

a summary of results pertaining to compression algorithms in Sec-

tion 2, including our proposed entropy coding method, 2D wavelet

transforms, space-time transforms, and a variety of sub-sampling

methods that provide an alternative to our wavelet transforms. Net-

working related issues are also discussed in Section 3. We have
already started implementing various aspects of the system using

programmable sensors with an eye towards testing our system both

in-lab and within a small scale real-life deployment (Section 4). To

conclude, we summarize the project status briefly in Section 5.

2. COMPRESSION COMPONENTS

This section summarizes the compression tools we have devel-

oped. A synopsis of our proposed entropy coding technique is

provided in Section 2.1. We also provide a detailed summary of
our recently proposed 2D wavelet transforms (Section 2.2) along

with preliminary extensions of our transforms to exploit correla-

tion across both time and space (Section 2.3). As an alternative

to our proposed transforms, a randomized subsampling method

based on compressed sensing is discussed (Section 2.4) along with

a set of techniques based on traditional subsampling methods (Sec-

tion 2.5).

2.1. Entropy Coding

Our previous work did not explicitly consider variable length en-

coding of the outputs of the distributed wavelet transform. In [11],

we addressed the task of using entropy coding to minimize the

communication cost between sensor nodes. To simplify our analy-

sis, we assume unidirectional transmission in a sequence of equally

spaced nodes with no path merges. For our variable length codes

we use the family of Golomb codes [12, 13]. Golomb codes are

known to be optimal for geometric distributions of nonnegative in-

tegers [14]. An important step in coding is to determine the value
of the code parameter m to minimize the average code length for

a given distribution. We adopt the sequential parameter estimation

method used in LOCO-I [15] image compression. In this method

the parameter m is chosen to be the smallest power of 2 that is

greater than the average absolute value of past observed sequence.

In our framework, these values are readily available as we decode

the history information from past nodes. Simulation results using

our proposed method are presented in Section 2.3.

2.2. 2D Wavelet Transforms

In our recent work [16] a 2D wavelet transform was developed

along an arbitrary routing tree using wavelet lifting. It exploits 2D

correlation across paths unlike the path-wise transforms proposed

in [17–20] while remaining computable in a unidirectional manner

unlike previously proposed 2D wavelet transforms [21, 22], thus

avoiding additional overhead due to backward data transmissions.

To implement a lifting transform [23] two things must be de-

fined at each level of decomposition: (i) a method for splitting

data points into even and odd sets and (ii) a method for comput-

ing predict and update operators. In our proposed transform, we

split according to a splitting tree at each level, where nodes of odd

(even) depth in the tree are odd (even) in the transform. Predict and

update filters are linear and employ simple averaging and smooth-

ing as detailed in [16]. A unidirectional computation algorithm is

also provided as well as a 2D transform optimization method using

dynamic programming. A sample network is shown in Figure 1,
where splitting trees for 2-levels are shown along with an example

of unidirectional computation.
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Performance curves are shown in Figure 2, showing the trade-

off between total energy consumption and reconstruction quality.

A comparison is made against the path-wise transform in [20] and

the 2D transform in [21]. Our method clearly outperforms both,

mainly since it exploits our first basic trade-off by exploiting data

correlation across adjacent routing paths and by choosing among

a number of different levels of decomposition via our optimization

method.
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Fig. 2. Energy consumption comparison shown on the right. Optimal

levels of decomposition for a uniform network shown on the left. Red x’s

denote 1-level nodes and green circles denote 2-level nodes.

2.3. Space Time Transforms

We focus on monitoring applications of sensor networks, in which

all nodes continuously collect data to monitor environmental con-

ditions such as temperature, humidity, seismic activity, etc. Due to

the nature of the physical phenomenon being monitored, the sens-

ing data collected by the network often exhibits high time correla-
tions (intra-node) as well as high spatial correlation (inter-node).

These spatial and temporal correlations brings significant advan-

tages for the development of joint space-time compression tech-

nologies.



Most existing sensor-web data compression work has been fo-

cused on inter-node correlations, i.e., considered spatial compres-

sion only. However, there are some notable exceptions, e.g., [24]

[25] [26] [27], which considered various approaches for data re-

duction through temporal processing. In [26] and [27], temporal

data reduction was achieved by suppression, i.e., a node only trans-

mits data when an interesting event (e.g., big change in data value)

has been detected. The major challenge to this approach is how to
choose the a priori threshold for change detection. The lightweight

temporal coding (LTC) method [24] attempts to represent the time

series data with a single linear model and send only the parameter

of this model. However, for data that can not be modeled as linear

sequences, the LTC method is not likely to work. The distributed

predictive coding (DPC) method [25] extended distributed source

coding (DSC) [4] [28] to scenarios where each source has mem-

ory, and exploited temporal correlation by linear predictive cod-

ing. The major challenge for distributed predictive coding is due

to the conflicts that arise between distributed coding and predic-

tion. In other words, optimal distributed quantization may com-

promise the prediction effectiveness at each source encoder. An

iterative encoder-decoder design was proposed in [25] in order to

cope with this problem. However, this method might be impracti-

cal for sensor web applications due to its complexity.

In this work, we focus on data aggregation-based compression

methods for sensor networks, where data are transmitted through

multiple hops along a pre-defined routing path, and compressed

jointly as they hop around the network. Figure 3 illustrates an

example of the information flow along a 1D routing path in such

systems. Each vertex in the graph represents a certain point in

the space-time domain, i.e., can be identified by its node and time
indexes. The solid edges in the graph represent real data trans-

missions between nodes; and the dashed edges represent the avail-

ability of historical information, both spatially and temporally, that

can be exploited to encode data of a node at any given time. For

example, to encode data of node n + 1 at time t + 2 (highlighted

as red in the graph), we can use all the information from current

node n + 1 and its parent node n at all time instances T satisfying

T ≤ t + 2 (shown as shaded in the figure).

Fig. 3. Information flow along a 1D path in an aggregation-based data

transmission system.

This might look like a conventional 2D sequential image com-

pression problem. However, there are some fundamental differ-

ences that arise due to the constraints in a sensor network. First

of all, there exists an asymmetry in the system, i.e., temporal pro-

cessing is local and much cheaper than spatial processing therefore

should be fully exploited to minimize the transmission cost; sec-
ond, backwards communication is usually prohibited and there-

fore the nodes in the beginning of the routing path always have

very limited spatial historical information to explore; furthermore,

there is usually a delay constraint which needs to be considered

when designing the temporal processing techniques. For example,

if a transform is used for temporal decorrelation, the filter length

and the level of decomposition may have to be delimited depend-

ing on the desired delay constraints.

As an initial step of evaluating potential benefits of using spatial-

temporal encoding for sensor network, we performed some prelim-

inary experiments using a wavelet transform based method. In this
approach we applied a single stage DWT on the data sequence at

each node to exploit temporal redundancy, and performed spatial

compression using distributed wavelet transform and entropy cod-

ing technique as presented in our previous work [11]. In figure

4 we show the rate distortion performance of various approaches:

a) combined spatial-temporal coding using 2D separable wavelet

transforms, b) spatial compression only using the technique as de-

scribed in [11], and c) baseline approach of entropy coding quan-

tized sample differences. In this example we use 10-bit source

data generated as quantized version of 2D second-order Auto Re-

gressive process with poles at 0.99e±jπ/64. The gap between the

curves represents benefits of combined spatial-temporal compres-

sion compared to spatial only compression alternatives.
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Fig. 4. This rate-distortion graph shows the benefit of (a) Combined

spatial-temporal coding and (b) Spatial compression only, compared to the

baseline approach of (c) entropy coding quantized sample differences (spa-

tial only).

There are many potential avenues for further exploration of

joint spatial-temporal compression. For wavelet-based techniques,

we may: a) explore additional level of temporal decompositions;

b) perform adaptive bit allocation across nodes taking into ac-

count their temporal behavior. An alternative to transform-based

approach is to use adaptive filtering [29] [30]. In adaptive filter-

ing, each sample value is predicted from the historical data and the
difference between the estimate and actual value is encoded and

transmitted. The estimation error is also used to update the filter

weights. We are currently investigating this technique.

2.4. Compressed Sensing

In this work, we are investigating applications of compressed sens-

ing (CS) with multi-hop routing. CS is a promising method that

can reconstruct a K-sparse signal, x, of dimension N from only M

measurements of the signal [8] [9]. The measurements, y ∈ RM ,

are obtained via a linear matrix-vector multiplication y = Φx, with

K ≪ M ≪ N . The measurement matrix (Φ) which represents
how the measurements are formed from samples is an M × N

matrix whose elements could be chosen to be random coefficients,

e.g., discrete values generated with a Bernoulli distribution or con-

tinuous values generated by a Gaussian distribution.



To apply CS to wireless sensor networks, we consider energy

cost and routing which prior CS work has not taken into account.

In most previous work, each measurement is obtained as linear

combinations of all input samples, i.e., Φ is a full matrix. This

approach cannot be directly applied to wireless sensor networks

due to high energy consumption it requires. Based on the assump-

tion that energy is dissipated only during data transmission among

sensors, we need to design an algorithm that efficiently collects
M measurements then transmits them to the sink. The focus is on

designing measurement matrices that are both incoherent with the

sparsity inducing basis (as required to ensure reconstruction from a

small number of measurements) and also lead to efficient routing.

In general, with increasing number of measurements, lower

coherence and higher reconstruction quality are obtained. How-

ever, with a given number of measurements, the correlation be-

tween coherence and reconstruction quality is low. For this rea-

son, the idea of investigating row-by-row partial coherence mini-

mization algorithm for obtaining the measurement matrix did not

yield expected results; i.e. the measurement matrix generated by
the algorithm shows a bit lower or almost same performance with

down-sampling (DS) in terms of reconstruction quality and energy

cost.

Our results to date show that a naive randomized spatial down-

sampling is efficient (on average) both in terms of reconstruction

quality and energy cost for AR data as well as data synthesized

to be compressible in DCT and multi-level Haar bases. Figure 5

shows that DS consumes less energy for the same level of recon-

struction quality than dense random projection (DRP) and sparse

random projection (SRP) [10]. The reasons for such performance
are that, for the DCT basis, the measurement matrix with down-

sampling is highly incoherent and for the Haar basis, the trend of

coherence vs. number of measurements is very similar for the dif-

ferent choices of measurement matrix.
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DRP is out of range due to very high energy cost.

Figure 6 shows the relative performance of CS-based and 2D

wavelet based [16] algorithms. For the low SNR region, CS with

DS projection can provide a higher SNR at the same cost. With

the 2D wavelet scheme as the bit budget is increased the accuracy

in reconstructing wavelet coefficients increases so that SNR per-

formance improves. However, in the case of compressed sensing

the achievable SNR for compressible data is limited (unless the

number of projections increases significantly.)

Random choice of sensors for downsampling with CS is at-

tractive since it allows completely distributed and load-balanced
operation. Also, it is not restricted to bandlimited signals (as long

as they are sparse or compressible). We are now investigating alter-

native scenarios in which aggregation holds promise by exploiting

local sparseness. As a further extension, our initial study was re-
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stricted to a grid topology and we are now working on extending

this to more general topologies.

2.5. Subsampling Methods

This work considers how a sleep schedule for nodes can be seen as

a spatio-temporal transform of the data. Realistic data from a sen-

sor field has temporal evolution as well as spatial propagation, and

often those spatial and temporal characteristics are nonseparable,

e.g., temporal evolution can be different at spatially close nodes.

Consider data distributed along 1-dimensional routing path,

where at each node some temporal sub-sampling pattern has been

used. Thus, we can also view this as a 2-dimensional dataset,

where sleep scheduling of nodes along this path as induced a 2-

D sampling. In the Figure 7 the two axes represent spatial and

temporal direction, respectively, and red dots indicate data sensing

at each node at each time. If we calculate the transmission cost

of the sensed data to the sink, total energy consumption is propor-
tional to the number of sensed data points. If we undersample the

data along either direction we can reduce the number of sensed

data points, but the gathered data may be undersampled so that

there will be error in reconstruction. To improve data quality for

a given number of sensed data points, we suggest checkerboard

shaped sampling pattern. This kind of pattern places the replicated

frequency spectrum of the data farther apart than the spatial-only

or temporal-only undersampled cases. With low-pass filtering in

the frequency domain and inverse Fourier transform, the data can

be reconstructed with less degradation due to aliasing.

Fig. 7. Various Sampling Patterns for Spatio-Temporal Data.

Figure 8 compares the reconstruction quality and total energy



consumption for the proposed method and the temporal-only case

with various undersampling factors, for the dataset in [31]. The

result shows that we can attain up to 2.6 dB gain with the same

amount of energy consumed for data transport.
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2.6. Spatio-temporal filtering

As mentioned in Section 2.5, general data from the sensor field
is nonseparable spatio-temporal data. If some data have charac-

teristics that data evolution along time accompanies spatial propa-

gation, it may be more efficient to find cross-correlation between

data points from different nodes at different time stamps. In other

words, at time tk and tk+1, cross-correlation can be better between

data points at different nodes i and j, than data points at the same

node i. Thus, it can be beneficial to find the spatio-temporal data

sequence which has the best cross-correlation in the data space and

filter the data along that direction, instead of filtering the data tem-

porally and spatially, respectively. We are currently investigating

practical techniques to exploit this intuition.

3. NETWORKING COMPONENTS

In this section, we investigate a variety of networking issues in-

cluding joint transform and routing optimization (Section 3.1) and

the design of erasure-correcting codes to ensure reliable delivery

in our system (Section 3.3). We also explore the potential per-

formance improvements when the broadcast capability of wireless

sensors is exploited (Section 3.2).

3.1. Joint 2D Transform and Routing Optimization

We consider the 2D transform detailed in Section 2.2, which can

be computed along an arbitrary routing tree. As mentioned before,

performing a transform along an efficient routing tree (i.e., SPT)

may not be efficient from a joint routing and compression stand-

point. Since data correlation between nodes is typically inversely

proportional to the distance between them, and since an SPT does

not guarantee short distances over each hop (only short overall dis-

tance), an SPT will not guarantee high data correlation over each

hop. Thus, some coding efficiency will be lost when encoding

data along an SPT. On the other hand, we can consider a Mini-

mum Spanning Tree (MST) constructed from a graph with edge

weights defined by inter-node correlation. Such an MST guaran-
tees that each node shares a link with its highest correlation neigh-

bor and will therefore be more efficient from a coding standpoint.

However, it will not guarantee efficient routing of data to the sink

since some links may force nodes to forward data away from the

sink. As an alternative to either efficient routing trees (SPT) or effi-

cient coding trees (MST), our recent work [32] developed methods

that search for combinations of these two trees that achieve a good

trade-off between coding efficiency and routing cost. In particular,

we exploit our second basic trade-off by finding the minimum cost

combination of the two trees under distortion constraints.

An example of such trees for a 40 node network is shown in

Figure 9 with corresponding performance curves in Figure 10. We

search for an optimal combination of an SPT (with distance based

edge weights) and MST (with correlation based edge weights).

The “Optimal Tree” in Figure 9 shows the minimum cost combina-

tion of SPT and MST found by exhaustive search and the “Heuris-

tic Tree” shows the combination found by our proposed heuristic,

the details of which can be found in our paper. A gain of 2.5 to 3

dB is attained by using our proposed joint optimization algorithms

over our transform along an SPT, as shown in Figure 10.
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3.2. Exploiting Broadcast Capability

Our current 2D lifting transforms [16] work over trees and ignore

the broadcast nature of wireless transmissions. We observe that

data flow along the tree is required primarily for invertibility of

the transform. Overheard broadcasts can potentially be used to

increase the compression rates by further taking advantage of local

correlations. The idea is to design invertible transforms that allow

nodes to use data from their descendants in the aggregation/routing

trees and additionally, others that are within communication range.

Suppose we are given a static tree T , in which links are rel-

atively stable. The broadcasts of even (update) nodes at depth

d + 1, d + 2, . . . , max depth might reach multiple odd (predict)



nodes at depth 1, 2, . . . , d, all of which can use this data for im-

proved predictions i.e., greater decorrelation. This is particularly

useful when an odd node hears such broadcasts from even nodes

that are not its children in T .

For given graph G(V, E) and tree graph T (V, R) (R ⊂ E),

we can exploit these broadcasts by using the following algorithm:

• Split vertices of G into even and odd groups based on depth

in T

• Build a graph TA by augmenting T with links in E\R
from even nodes at any depth d to odd nodes at any depth

1, 2, . . . , d − 1. This is illustrated in Figure 11.

• Use TA for predict computations at odd nodes and T for

update computations at even nodes
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Constructing the transform in this way still preserves invert-
ibility. Furthermore, this can still be computed in a unidirectional

manner simply by adding a term to the partial coefficient equa-

tions corresponding to the broadcast neighbors. However, many

open questions still remain pertaining to the best choice of nodes

to use broadcast, filter coefficient design, etc. This topic is still

under investigation.

3.3. Erasure-Correcting Codes

A major challenge in networking the low-power low-capability ra-

dios of the sensor nodes is that many communication links will

be highly unreliable and lossy, showing asymmetry and large tem-

poral fluctuations, due to multipath fading effects and individual

hardware variance. We have investigated several approaches in [11]

to improve the reliability of network communications, including

routing algorithms, network coding, and channel coding on indi-

vidual links. Our work to date has included an investigation of

rateless erasure-correcting codes suitable for application to node-

to-node links subject to large fluctuations in link availability. Based

on our investigation to date we plan to use off the shelf erasure

correcting codes, rather than devote additional efforts to studying
novel techniques.

4. IMPLEMENTATION

We have implemented the unidirectional, invertible 2D wavelet

scheme in NesC/TinyOS. Tmote Sky devices, which have an At-

mega processors and CC2420 radios, were used for the experi-

ments. The implementation is completely distributed and flexible

- it can work for any given tree. However, local tree informa-

tion such as the parent, child and grandchild ids are assumed to
be available at each node. For efficient operation in a real net-

work, packetization is an additional requirement. Multiple mea-

surements and coefficients need to be stored at nodes until they can

fill a packet. Full coefficients are uniformly quantized and stuffed

into packets based on the bit allocation. There is added overhead

since maximum and minimum over the stuffed values are also in-

cluded in the packet for reconstruction. The packets are forwarded

along the tree to a base station (laptop), where the inverse opera-

tions are performed. Reconstruction code is in MATLAB.

1

2 3

4 5 6 7 8

109 13 14

15

11 12

Base Station

Heat
Source

Heat
Source

Fig. 12. Experiment setting and routing tree

A network of 15 Tmote sky nodes is used for an evaluation.

The sensed phenomena is ambient temperature, in which gradi-

ents are introduced by switching hot lamps on and off. The same

sequence and timing of switches is repeated with different aver-

age bit allocation. In each experiment, all nodes have the same

bit allocation. The experiment setting and routing is illustrated in

Figure 12.

bits per sample normalized cost average MSE

2 .79 .036

4 .85 .00057

Fig. 13. MSE versus Cost comparison for 2 and 4 bits allocated

per sample

The raw data samples are 16 bits each. As seen in Figure 14,

with 2 bits allocated per sample, the reconstruction is able to cap-

ture the trend. With 4 bits allocated, the reconstruction is very

close to the measured signal. The performance in terms of average

mean-squared error vs the cost for the different bit allocations is

shown in the table in Figure 13. The cost is the total number of

packets required in the experiments and is normalized by the cost

for sending raw data measurements over the same routing tree.

These results illustrate the tradeoff between cost and reconstruc-

tion quality, along with verifying the correctness of the implemen-

tation.

We are currently working on introducing robustness mecha-

nisms to handle packet losses. A further goal is to develop a mod-

ular architecture for distributed compression in sensor networks.
The current implementation provides insights into some of the

modules that might be part of such an architecture.

4.1. Collaboration plans

We are pursuing several avenues to define specific science envi-

ronments for which to customize our techniques and on which to

deploy simple test systems, if possible. In considering what is fea-

sible we are taking into consideration the capabilities of the motes

(our target sensor development and testing platform.) We are in
particular focusing on what can be done given the measurement

sensor types, communication ranges, etc. The JPL investigators

have started to develop a plan to select specific NASA applications

that could be suitable to demonstrate our techniques. Further, we
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Fig. 14. Reconstruction performance examples for different bit allocations

have identified a target environment for demonstrating the effec-

tiveness of our compression techniques. AIMS (Australian Insti-

tute of Marine Sciences) is deploying WSNs to monitor growth,

development and health of the corals at the Great Barrier Reef.

Our aim is to set up a long-standing (greater than 1 month) medium

size (50-100 motes) WSN test bed in conjunction with AIMS. The

plan is to implement and test joint routing and compression al-
gorithms for data collection from the test bed, in addition to non-

trivial tree construction and sleep scheduling algorithms developed

by ANRG.

5. CONCLUSIONS

In this paper we have provided an overview of a collaborative

project that is designing new approaches for gathering, compres-

sion and representation of spatially correlated data in a sensor net-

work. This project spans a range of issues, from signal representa-
tion and compression optimized for 2D irregularly sampled mea-

surements, to the design of efficient erasure codes to ensure reli-

able operation. We are working on a testbed system to validate our

designs.
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